Model organisms such as budding yeast, worms and flies have proven instrumental
in the discovery of genetic determinants of aging, and the fission yeast
Schizosaccharomyces
pombe is a promising new system for these
studies. We devised an approach to directly select for long-lived
S.
pombe mutants from a random DNA insertion
library. Each insertion mutation bears a unique sequence tag called a bar code
that allows one to determine the proportion of an individual mutant in a culture
containing thousands of different mutants. Aging these mutants in culture
allowed identification of a long-lived mutant bearing an insertion mutation in
the cyclin gene clg1
+. Clg1p, like
Pas1p, physically associates with the cyclin-dependent kinase Pef1p. We
identified a third Pef1p cyclin, Psl1p, and found that only loss of Clg1p or
Pef1p extended lifespan. Genetic and co-immunoprecipitation results indicate
that Pef1p controls lifespan through the downstream protein kinase Cek1p. While
Pef1p is conserved as Pho85p in Saccharomyces
cerevisiae, and as cdk5 in humans, genome-wide
searches for lifespan regulators in S. cerevisiae have
never identified Pho85p. Thus, the S. pombe system
can be used to identify novel, evolutionarily conserved lifespan extending
mutations, and our results suggest a potential role for mammalian cdk5 as a
lifespan regulator.