Hepatitis A virus (HAV), an enigmatic and ancient pathogen, is a major causative
agent of acute viral hepatitis worldwide. Although there are effective vaccines,
antivirals against HAV infection are still required, especially during fulminant
hepatitis outbreaks. A more in-depth understanding of the antigenic
characteristics of HAV and the mechanisms of neutralization could aid in the
development of rationally designed antiviral drugs targeting HAV. In this paper,
4 new antibodies—F4, F6, F7, and F9—are reported that potently neutralize HAV at
50% neutralizing concentration values (neut
50
) ranging from 0.1 nM to
0.85 nM. High-resolution cryo-electron microscopy (cryo-EM) structures of HAV
bound to F4, F6, F7, and F9, together with results of our previous studies on
R10 fragment of antigen binding (Fab)-HAV complex, shed light on the locations
and nature of the epitopes recognized by the 5 neutralizing monoclonal
antibodies (NAbs). All the epitopes locate within the same patch and are highly
conserved. The key structure-activity correlates based on the antigenic sites
have been established. Based on the structural data of the single conserved
antigenic site and key structure-activity correlates, one promising drug
candidate named golvatinib was identified by in silico docking studies.
Cell-based antiviral assays confirmed that golvatinib is capable of blocking HAV
infection effectively with a 50% inhibitory concentration (IC
50
) of
approximately 1 μM. These results suggest that the single conserved antigenic
site from complete HAV capsid is a good antiviral target and that golvatinib
could function as a lead compound for anti-HAV drug development.