Generation and Countermeasures of Adversarial Examples on Vision: A Survey
Jiangfan Liu,
Yishan Li,
Yanming Guo
et al.
Abstract:Recent studies have found that deep learning models are vulnerable to adversarial examples, demonstrating that applying a certain imperceptible perturbation on clean examples can effectively deceive the well-trained and high-accuracy deep learning models. Moreover, the adversarial examples can achieve a considerable level of certainty with the attacked label. In contrast, human could barely discern the difference between clean and adversarial examples, which raised tremendous concern about robust and trustwort… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.