A new modeling approach on the torsional dynamics of hypoid gear pairs is presented in this work. The current formulation is characterized by an alternative expression of the dynamic transmission error (DTE), accounting for the variation of the effective mesh position. Speed dependent resistive torque is introduced on the gear wheel, enabling the system to reach dynamic equilibrium based on realistic vehicle operating conditions. The above are supplementing past research studies, where simplifications were introduced in the calculation of DTE, while the operating angular velocity was defined a priori. The analysis is accompanied by numerical results, indicating the rich dynamic behavior captured by the new formulation. The dynamic complexity of the system necessitates the identification of the various response regimes. A solution continuation method (software AUTO) is employed to follow the stable/unstable periodic response branches over the operating range of the differential under examination.