The vector optical beam with longitudinally varying polarization during propagation in free space has attracted significant attention in recent years. Compared with traditional vector optical beams with inhomogeneous distribution of polarization in the transverse plane, manipulating the longitudinal distribution of polarization provides a new dimension for the expansion of the applications of vector optical beams in volume laser machining, longitudinal detection, and in vivo micromanipulation. Two theoretical strategies for achieving this unique optical beam are presented in the way of constructing the longitudinally varying phase difference and amplitude difference. Relevant generation methods are reviewed which can be divided into the modulation of complex amplitude in real space and the filtering of the spatial spectrum. In addition, current problems and prospects for vector optical beams with longitudinally varying polarization are discussed.