Porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 5 (GP5) is the most abundant envelope glycoprotein and a major inducer of neutralizing antibodies in vivo. Three putative N-linked glycosylation sites (N34, N44, and N51) are located on the GP5 ectodomain, where a major neutralization epitope also exists. To determine which of these putative sites are used for glycosylation and the role of the glycan moieties in the neutralizing antibody response, we generated a panel of GP5 mutants containing amino acid substitutions at these sites. Biochemical studies with expressed wild-type (wt) and mutant proteins revealed that the mature GP5 contains high-mannose-type sugar moieties at all three sites. These mutations were subsequently incorporated into a full-length cDNA clone. Our data demonstrate that mutations involving residue N44 did not result in infectious progeny production, indicating that N44 is the most critical amino acid residue for infectivity. Viruses carrying mutations at N34, N51, and N34/51 grew to lower titers than the wt PRRSV. In serum neutralization assays, the mutant viruses exhibited enhanced sensitivity to neutralization by wt PRRSV-specific antibodies. Furthermore, inoculation of pigs with the mutant viruses induced significantly higher levels of neutralizing antibodies against the mutant as well as the wt PRRSV, suggesting that the loss of glycan residues in the ectodomain of GP5 enhances both the sensitivity of these viruses to in vitro neutralization and the immunogenicity of the nearby neutralization epitope. These results should have great significance for development of PRRSV vaccines of enhanced protective efficacy.Porcine reproductive and respiratory syndrome virus (PRRSV) belongs to the family Arteriviridae within the order Nidovirales which also includes equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus. The viral genome is a linear, positive-stranded RNA molecule of approximately 15.0 kb in length and possesses a cap structure at the 5Ј end and a poly(A) tail at the 3Ј end. Eight open reading frames (ORFs) are in the viral genome (9, 34). The first two open reading frames (ORF1a and ORF1ab) encode viral nonstructural (NS) polyproteins that are involved in polyprotein processing and genome transcription and replication (47). The viral structural proteins, encoded in ORFs 2 to 7, are expressed from six subgenomic capped and polyadenylated mRNAs that are synthesized as a 3Ј-coterminal nested set of mRNAs with a common leader sequence at the 5Ј end.The major viral envelope protein is glycoprotein 5 (GP5), which is encoded in ORF5 of the viral genome (29,35,36). GP5 is a glycosylated transmembrane protein of approximately 25 kDa (10,16,35). It has a putative N-terminal signal peptide and possesses three potential N-linked glycosylation sites which are located in a small ectodomain comprising the first 40 residues of the mature protein (28,35). In EAV and LDV, the major envelope glycoprotein forms a disulfide-l...