“…The generation of relativistic electron bunches with durations in the attosecond range can lead to pump/probe beams, which can be fruitfully employed to unveil ultrafast dynamics [1]. In the context of plasma wakefield acceleration either driven by laser pulses (LWFA) [2] or particle beams (PWFA) [3], several methods have been proposed to specifically generate electron beams with a duration below the femtosecond scale, from the pioneering work about beam compression of beams externally injected ahead of the driver laser pulse [4][5][6], dense attosecond beams with up-ramp density transitions [7], attosecond beams via density modulations [8], attosecond trains obtained by betatron quivering modulations [9,10], few-cycle TW pulses-driven electron beams [11,12], attosecond trains via ionization injection [13] and high-brightness electron beams through ionization injection in hybrid LWFA/PWFA schemes [14,15]. As the disentanglement of the electron beam parameters including length, charge, average energy, energy spread and emittance are of paramount importance for the feasibility of the pump/probe attosecond source, thus a flexible injection/acceleration scheme should be preferred.…”