“…n−1 − 2κ(1 +n) × (n − 1)P (13) n − (n + 1)P (13) n+1 + 2P (11) n − 2κnn × P (13) n − P (13) n−1 −γ (13) 13 P (13) n , P (14) n = 2iδP (13) n + ig (n − 1)P (8) n − nP (4) n−1 − 2κ(1 +n) × (n − 1)P (14) n − (n + 1)P (14) n+1 + 2P (12) n − 2κnn × P (14) n − P (14) n−1 −γ (14) 14 P (14) n , P (15) n = 2iδP (16) n + ig (n + 1)P (5) n − (n + 2)P (9) n − 2κ(1 +n)(1 + n) P (15) n − P (15) n+1 − 2κn × (n + 2)P (15) n − nP (15) n−1 − 2P (11) n −γ (15) 15 P (15) n , P (16) n = 2iδP (15) n + ig (n + 1)P (6) n+1 − (n + 2)P (10) n − 2κ(1 +n)(1 + n) P (16) n − P (16) n+1 − 2κn × (n + 2)P (16) n − nP (16) n−1 − 2P (12) n −γ 31 , ρ (6) = ρ 13 b † +bρ 31 , ρ (7) = b † ρ 13 −ρ 31 b, ρ (8) = b † ρ 13 +ρ 31 b, ρ (9) = ρ 21 b † − bρ 12 , ρ (10) = ρ 21 b † + bρ 12 , ρ (11) = b † ρ 23 b † + bρ 32 b, ρ (12) = b † ρ 23 b † − bρ 32 b, ρ (13) = b †2 ρ 23 + ρ 32 b 2 , ρ (14) = b †2 ρ 23 − ρ 32 b 2 , ρ (15) = ρ 23 b †2 + b 2 ρ 32 , ρ (16) = ρ 23 b †2 − b 2 ρ 32 , using the Master Equation (A1) and then projecting them on the Fock states |n , i.e., P (i) n = n|ρ (i) |n , {i ∈ 0 · · · 16}, and n ∈ {0, ∞}. Together with Exps.…”