The transition from a green, hard, and acidic pericarp to a sweet, soft, coloured, and sugar-rich ripe fruit occurs in many unrelated fruit species. High throughput identification of differentially expressed genes in grape berry has been achieved by the use of 50-mers oligoarrays bearing a set of 3,200 Unigenes from Vitis vinifera to compare berry transcriptome at nine developmental stages. Analysis of transcript profiles revealed that most activations were triggered simultaneously with softening, occurring within only 24 h for an individual berry, just before any change in colouration or water, sugar, and acid content can be detected. Although most dramatically induced genes belong to unknown functional categories, numerous changes occur in the expression of isogenes involved in primary and secondary metabolism during ripening. Focusing on isogenes potentially significant in development regulation (hormonal control of transcription factor) revealed a possible role for several hormones (cytokinin, gibberellin, or jasmonic acid). Transcription factor analysis revealed the induction of RAP2 and WRKY genes at véraison, suggesting increasing biotic and abiotic stress conditions during ripening. This observation was strengthened by an increased expression of multiple transcripts involved in sugar metabolism and also described as induced in other plant organs during stress conditions. This approach permitted the identification of new isogenes as possible control points: a glutathione S-transferase exhibits the same expression profile as anthocyanin accumulation and a new putative sugar transporter is induced in parallel with sugar import.