The retinal pigment epithelium (RPE) is an important monolayer of cells present in the outer retina, forming a major part of the blood–retina barrier (BRB). It performs many tasks essential for the maintenance of retinal integrity and function. With increasing knowledge of the retina, it is becoming clear that both common retinal disorders, like age-related macular degeneration, and rare genetic disorders originate in the RPE. This calls for a better understanding of the functions of various proteins within the RPE. In this regard, mice enabling an RPE-specific gene deletion are a powerful tool to study the role of a particular protein within the RPE cells in their native environment, simultaneously negating any potential influences of systemic changes. Moreover, since RPE cells interact closely with adjacent photoreceptors, these mice also provide an excellent avenue to study the importance of a particular gene function within the RPE to the retina as a whole. In this review, we outline and compare the features of various Cre mice created for this purpose, which allow for inducible or non-inducible RPE-specific knockout of a gene of interest. We summarize the various benefits and caveats involved in the use of such mouse lines, allowing researchers to make a well-informed decision on the choice of Cre mouse to use in relation to their research needs.