Reversible Primitive Permutations (RPP) are recursively defined functions designed to model Reversible Computation. We illustrate a proof, fully developed with the proof-assistant Lean, certifying that: "RPP can encode every Primitive Recursive Function". Our reworking of the original proof of that statement is conceptually simpler, fixes some bugs, suggests a new more primitive reversible iteration scheme for RPP, and, in order to keep formalization and semi-automatic proofs simple, led us to identify a single pattern that can generate some useful reversible algorithms in RPP: Cantor Pairing, Quotient/Reminder of integer division, truncated Square Root. Our Lean source code is available for experiments on Reversible Computation whose properties can be certified.