Using the numerical solution of the system of equations for the amplitudes of bound states, together with the wave equation, we theoretically consider stopped polarization pulse superradiance upon excitation by a pair of half-period attosecond pulses in a thin layer of a five-level resonant medium, the parameters of which are the same as in a hydrogen atom. It is shown that in the case of a multilevel medium, at certain parameters of the exciting field, the superradiance pulse near the medium is also a single-cycle pulse, the shape of which is determined by the first time derivative of the stopped polarization pulse, as in the case when approximate low-level and classical models were used to describe the response of the medium.