2024
DOI: 10.1007/s10772-024-10161-1
|View full text |Cite
|
Sign up to set email alerts
|

Generative adversarial networks for whispered to voiced speech conversion: a comparative study

Dominik Wagner,
Ilja Baumann,
Tobias Bocklet

Abstract: Generative Adversarial Networks (GANs) have demonstrated promising results as end-to-end models for whispered to voiced speech conversion. Leveraging non-autoregressive systems like GANs capable of performing conditional waveform generation eliminates the need for separate models to estimate voiced speech features, and leads to faster inference compared to autoregressive methods. This study aims to identify the optimal GAN architecture for the whispered to voiced speech conversion task by comparing six state-o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 49 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?