Active learning holds great promise for improving education, particularly in science, technology, engineering, and mathematics (STEM). Instead of receiving information passively, students take agency and actively construct their own understanding. A large meta-analysis has suggested that these features improve student performance in STEM (Freeman et al., 2014). Many instructional practices that promote active learning have the added benefit of making students familiar with the scientific process of testing theories via predictions and observations. Active learning could also contribute to reducing achievement gaps and empowering students from underrepresented groups to consider careers in science. It therefore seems paramount to synthesize a framework of active learning that guides research and practice in this field, and I applaud Lombardi and colleagues (this issue) for their interdisciplinary efforts to do so.Although the promises of active learning are wideranging, research on its merits has predominantly focused on undergraduate instruction. The meta-analysis by Freeman and colleagues (2014) focused exclusively on undergraduates, and so does the synthesis by Lombardi and colleagues. Does active learning work equally well for younger students, from kindergarten to 12th grade (K-12)? Or are there prerequisites for benefiting from active learning that younger students do not yet meet? And can the construction-of-understanding ecosystem proposed by Lombardi and colleagues inform research and practice in K-12 education as well?Answers to these questions are important for improving scientific literacy in society at large. Attempting to close achievement gaps at earlier ages is more effective and has higher returns than doing so later (Heckman, 2006). Furthermore, bringing active-learning practices into K-12 education could facilitate the transition to 997376P SIXXX10.