“…For instance, after constructing an example satisfying (1) -the Poizat equation y ′′ • y = y ′ and y ′ = 0 -, Poizat conjectures in [Poi83] that for every n ≥ 2, a "general" order n algebraic (non linear) differential equation should be strongly minimal (see also Conjecture 1 in [She73]) and concludes that: à propos des corps differentiels, on est souvent amené à faire des conjectures; dont on est persuadé qu'elles ne peuvent être fausses que pour des équations très particulières, et que pourtant on n'arrive à montrer que dans des cas encore plus particuliers. 1 After the many progress concerning classical families mentioned above, the first abundance result for strongly minimal differential equations of order two obtained in [Jao21] states that the family Ξ(2, d) formed by the systems of differential equations of the form (S) :…”