Tautomycin (TTM) is a highly potent and specific protein phosphatase inhibitor isolated from Streptomyces spiroverticillatus. The biological activity of TTM makes it an important lead for drug discovery, whereas its spiroketal-containing polyketide chain and rare dialkylmaleic anhydride moiety draw attention to novel biosynthetic chemistries responsible for its production. To elucidate the biosynthetic machinery associated with these novel molecular features, the ttm biosynthetic gene cluster from S. spiroverticillatus was isolated and characterized, and its involvement in TTM biosynthesis was confirmed by gene inactivation and complementation experiments. The ttm cluster was localized to a 86-kb DNA region, consisting of 20 open reading frames that encode three modular type I polyketide synthases (TtmHIJ), one type II thioesterase (TtmT), five proteins for methoxymalonyl-S-acyl carrier protein biosynthesis (Ttm-ABCDE), eight proteins for dialkylmaleic anhydride biosynthesis and regulation (TtmKLMNOPRS), as well as two additional regulatory proteins (TtmF and TtmQ) and one tailoring enzyme (TtmG). A model for TTM biosynthesis is proposed based on functional assignments from sequence analysis, which agrees well with previous feeding experiments, and has been further supported by in vivo gene inactivation experiments. These findings set the stage to fully investigate TTM biosynthesis and to biosynthetically engineer new TTM analogs.