Somatic embryogenesis is the regeneration of embryos from the somatic cell via dedifferentiation and redifferentiation without the occurrence of fertilization. A complex network of genes regulates the somatic embryogenesis process. Especially, microRNAs (miRNAs) have emerged as key regulators by affecting phytohormone biosynthesis, transport and signal transduction pathways. miRNAs are small, non-coding small RNA regulatory molecules involved in various developmental processes including somatic embryogenesis. Several types of miRNAs such as miR156, miR157, miR 159, miR 160, miR165, miR166, miR167, miR390, miR393 and miR396 have been reported to intricate in regulating somatic embryogenesis via targeting the phytohormone signaling pathways. Here we review current research progress on the miRNA-mediated regulation involved in somatic embryogenesis via regulating auxin, ethylene, abscisic acid and cytokinin signaling pathways. Further, we also discussed the possible role of other phytohormone signaling pathways such as gibberellins, jasmonates, nitric oxide, polyamines and brassinosteroids. Finally, we conclude by discussing the expression of miRNAs and their targets involved in somatic embryogenesis and possible regulatory mechanisms cross talk with phytohormones during somatic embryogenesis.