Retinoids are signaling molecules that are involved in proliferation, differentiation and apoptosis during development. Retinoids exert their effects, in part, by binding to nuclear receptors, thereby altering gene expression. Clinical use of retinoids in the treatment of neuroblastoma is of interest due to their success in management of acute promyelocytic leukemia. Using the SK-N-SH human neuroblastoma cell line we investigated the effect of the differentiation agent, all-trans-retinoic acid (ATRA) on manganese superoxide dismutase (MnSOD) expression, an enzyme previously shown to enhance differentiation in vitro. Manganese superoxide dismutase mRNA, protein and activity levels increased in a time dependent manner upon treatment with ATRA. Nuclear levels of the NFκB proteins, p50 and p65, increased within 24 h of ATRA administration. This increase paralleled the degradation of the cytoplasmic inhibitor, IκB-β. Furthermore an increase in DNA binding activity to a NFκB element occurred within a 342 base pair enhancer (I2E) of the SOD2 gene with 10 μM ATRA treatment. Reporter analysis showed that ATRA-mediated I2E dependent luciferase expression was attenuated upon mutation of the NFκB element, suggesting a contribution of this transcription factor in retinoid-mediated upregulation of MnSOD. This study identifies SOD2 to be a retinoid responsive gene and demonstrates activation of the NFκB pathway in response to ATRA treatment of SK-N-SH cells. These results suggest signaling events involving NFκB and SOD2 may contribute to the effects of retinoids used in cancer therapy.