The Haenam epithermal mineralized zone is located in the southwestern part of South Korea, and hosts low sulfidation epithermal Au-Ag deposit (Eunsan-Moisan) and clay quarries (Okmaesan, Seongsan, and Chunsan). Epithermal deposits and accompanying hydrothermal alteration related to Cretaceous volcanism caused large zoned assemblages of hydrothermal alteration minerals. Advanced argillic-altered rocks with mineral assemblages of alunite-quartz, alunite-dickite-quartz, and dickite-kaolinite-quartz exposed on the Okmaesan, Seongsan, and Chunsan area. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), with three visible and near infrared bands, six shortwave infrared bands, and five thermal infrared bands, was used to identify advanced argillic-altered rocks within the Haenam epithermal mineralized zone. The distinct spectral features of hydrothermal minerals allow discrimination of advanced argillic-altered rocks from non-altered rocks within the study area. Because alunite, dickite, and kaolinite, consisting of advanced argillic-altered rocks within the study area are characterized by Al-O-H-bearing minerals, these acid hydrothermal minerals have a strong absorption feature at 2.20 µm. The band combination and band ratio transformation cause increasing differences of DN values between advanced argillic-altered rock and non-altered rock. The alunite and dickite-kaolinite of advanced argillic-altered rocks from the Okmaesan, Seongsan, and Chunsan have average DN values of 1.523 and 1.737, respectively. These values are much higher than those (1.211 and 1.308, respectively) of non-altered area. ASTER images can remotely provide the distribution of hydrothermal minerals on the surface. In this way good relation between ASTER spectra analysis and field data suggests that ASTER spectral analysis can be useful tool in the initial steps of mineral exploration.