Nanosized polymeric vesicles (polymersomes) assembled from ABA triblock copolymers of poly(N-vinylcaprolactam)-poly(dimethylsiloxane)-poly(N-vinylcaprolactam) (PVCL-PDMS-PVCL) are a promising platform for biomedical applications, as the temperature-responsiveness of the PVCL blocks enables reversible vesicle shrinkage and permeability of the polymersome shell at elevated temperatures. Herein, we explore the effects of molecular weight, polymer block weight ratios, and temperature on the structure of these polymersomes via electron microscopy, dynamic light scattering, small angle neutron scattering (SANS), and all-atom molecular dynamic methods. We show that the shell structure and overall size of the polymersome can be tuned by varying the hydrophilic (PVCL) weight fraction of the polymer: at room temperature, polymers of