2016 3rd International Conference on Logistics Operations Management (GOL) 2016
DOI: 10.1109/gol.2016.7731699
|View full text |Cite
|
Sign up to set email alerts
|

Genetic algorithm for neural network architecture optimization

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
20
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 46 publications
(23 citation statements)
references
References 6 publications
0
20
0
2
Order By: Relevance
“…Figure 6 shows the parameter adjustment of the chromosome. The control genes are adjusted using a GA [20,21], whereas the parameter genes are tuned using PSO. The GA is a stochastic search procedure based on natural selection with the use of reproduce, crossover, and mutation operations.…”
Section: Local Search Using Chaotic Methodsmentioning
confidence: 99%
“…Figure 6 shows the parameter adjustment of the chromosome. The control genes are adjusted using a GA [20,21], whereas the parameter genes are tuned using PSO. The GA is a stochastic search procedure based on natural selection with the use of reproduce, crossover, and mutation operations.…”
Section: Local Search Using Chaotic Methodsmentioning
confidence: 99%
“…El artículo consultado (Idrissi, Ramchoun, Ghanou y Ettaouil, 2016) propone una formulación matemática multiobjetivo, a fin de determinar el número óptimo de capas ocultas, el número de neuronas en cada capa y el mejor valor de los pesos de sus respectivas salidas. Por lo general, la elección de la arquitectura de la RNA es hecha de forma empírica.…”
Section: Genetic Algorithm For Neural Network Architecture Optimizationunclassified
“…7 while generation ≤ generation max do 8 if generation = 0 then 9 epochs ← (epochs +1). 10 population size ← (population size −10). 11 Select the parents.…”
Section: Genetic Algorithmmentioning
confidence: 99%
“…• number of filters in 1D and 2D convolution: [10,100] • filter size for 1D and 2D convolution: [1,6] • kernel size for 1D and 2D max pooling: [1,6] • number of units in fully connected layers: [ new layer ← CreateLayer(dropout allowed, layer type) 10 Append newlayer to chromosome 11 if newlayer is fully connected then 12 layer type ← 'non-cnn' 13 Randomly create fully connected layer and append to chromosome 14 return chromosome. 15 Function CreateLayer (dropout, type) 16 if type = 'cnn then 17 if dropout = true then 18 Randomly create convolution, fully connected or dropout operation 19 else 20 Randomly create convolution layer 21 else 22 if dropout = true then 23 Randomly create fully connected layer or dropout operation 24 else 25 Randomly create fully connected layer…”
Section: A Initial Population Generationmentioning
confidence: 99%