Neuropathy target esterase (NTE) is a molecular target for the organophosphorus compound-induced delayed neuropathy (OPIDN) and also one of the genetic factors responsible for the development of the hereditary spastic paraplegia (HSP), characterized by axon degeneration of motoneurons causing progressive lower-limb spastic paralysis. Both HSP and OPIDN are characterized by the distal axonopathy. The molecular mechanisms underlying the axonopathy involved in HSP and OPIDN are poorly understood. In order to have a beter understanding of the mechanisms that NTE is involved in, we used one of the homologs, human NTE. Swiss cheese (sws) is a Drosophila melanogaster ortholog of NTE with 39% homology. Mutations in sws as it was shown before lead to age-dependent neurodegeneration, structure alteration of glia cells, and reduced insect life span. To study SWS functions, we used the system of the third-instar larval neuromuscular junctions of D. melanogaster. In this study, we show that mutations in sws (sws 1 and sws
76−1) and SWS knockdown alter neuromuscular junction's morphology and synaptic microtubules organization.