3With an obligate intracellular lifestyle, Alphaproteobacteria of the order Rickettsiales have inextricably coevolved with their various eukaryotic hosts, resulting in small, reductive genomes and strict dependency on host resources. Unsurprisingly, large portions of Rickettsiales genomes encode proteins involved in transport and secretion. One particular transporter that has garnered recent attention from researchers is the type IV secretion system (T4SS). Homologous to the well-studied archetypal vir T4SS of Agrobacterium tumefaciens, the Rickettsiales vir homolog (rvh) T4SS is characterized primarily by duplication of several of its genes and scattered genomic distribution of all components in several conserved islets. Phylogeny estimation suggests a single event of ancestral acquirement of the rvh T4SS, likely from a nonalphaproteobacterial origin. Bioinformatics analysis of over 30 Rickettsiales genome sequences illustrates a conserved core rvh scaffold (lacking only a virB5 homolog), with lineage-specific diversification of several components (rvhB1, rvhB2, and rvhB9b), likely a result of modifications to cell envelope structure. This coevolution of the rvh T4SS and cell envelope morphology is probably driven by adaptations to various host cells, identifying the transporter as an important target for vaccine development. Despite the genetic intractability of Rickettsiales, recent advancements have been made in the characterization of several components of the rvh T4SS, as well as its putative regulators and substrates. While current data favor a role in effector translocation, functions in DNA uptake and release and/or conjugation cannot at present be ruled out, especially considering that a mechanism for plasmid transfer in Rickettsia spp. has yet to be proposed.Type IV secretion systems (T4SSs) are macromolecular complexes that transport protein, DNA, and nucleoprotein across the bacterial cell envelope in both Gram-negative and Gram-positive species, as well as some wall-less bacteria and archaea (1, 32). Functioning in naked DNA uptake and release (60), conjugation (80), and the propagation of genomic islands (69), T4SSs are prominent factors in bacterial diversification and are responsible for the horizontal spread of antimicrobial resistance and virulence genes. T4SSs are also used by some species to deliver effector molecules (DNA and/or protein) into eukaryotic host cells (28), a process that facilitates infection and subsequent pathogenesis. It is assumed that all varieties of T4SSs form a channel that spans the cell envelope and culminates in a surface-exposed structure, such as a pilus (Fig. 1A). Despite this conserved architecture, genetic diversity in a multitude of features, including gene composition and organization, underlies the hundreds of T4SSs identified through genome sequencing. Recently, T4SSs have been classified into four groups: F, P, I, and GI (70). F-T4SSs and P-T4SSs (previously known as type IVA) are widespread systems represented by the archetypes encoded by the F plasmid o...