Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Motile cilia (also interchangeably called “flagella”) are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer‐doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Motile cilia (also interchangeably called “flagella”) are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer‐doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Motile flagella (also called “motile cilia”) play a variety of important roles in lower and higher eukaryotes, including cellular motility and fertility. Flagellar motility is driven by several species of the gigantic motor-protein complexes, flagellar dyneins, that reside within these organelles. Among the flagellar-dynein species, a hetero-dimeric dynein called “IDA f/I1” has been shown to be particularly important in controlling the flagellar waveform, and defects in this dynein species in humans cause ciliopathies such as multiple morphological abnormalities of the flagella and asthenoteratozoospermia. IDA f/I1 is composed of many subunits, including two HCs (HCα and HCβ) and three ICs (IC140, IC138, and IC97), and among the three ICs of IDA f/I1, the exact molecular function(s) of IC97 in flagellar motility is not well understood. In this study, we isolated a Chlamydomonas mutant lacking IC97 and analyzed the phenotypes. The ic97 mutant phenocopied several aspects of the previously isolated IDA-f/I1-related mutants in Chlamydomonas and showed slow swimming compared to the wild type but retained the ability to phototaxis. Further analysis revealed that the mutant had low flagellar beat frequency and miscoordination between the two ( cis - and trans -) flagella. In addition, the mutant cells swam in a comparatively straight path compared to the wild-type cells. Taken together, our results highlight the importance of proper assembly of IC97 in the IDA-f/I1 complex for the regulation of flagellar and cellular motility in Chlamydomonas and provide valuable insights into both the molecular functions of IC97 orthologs in higher eukaryotes and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects. IMPORTANCE IDA f/I1 is a hetero-dimeric flagellar dynein that is particularly important for the regulation of flagellar waveform and whose defects are associated with human ciliopathies. IC97 is an evolutionarily conserved intermediate chain of IDA f/I1, but the detailed molecular functions of IC97 in flagellar motility have not been elucidated. In this study, mutational and biochemical analyses of the previously uncharacterized Chlamydomonas ic97 mutant revealed that IC97 is required for both the normal flagellar and cellular motility. In particular, IC97 appears to play an important role in both the control of flagellar beat frequency and the coordination between the two ( cis - and trans -) flagella in Chlamydomonas . Our results provide important insights into the regulation of IDA-f/I1 activity by IC97 and the pathogenetic mechanisms of human ciliopathies caused by IDA-f/I1 defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.