“…For nearly two decades, ’omics technologies including transcriptomics, proteomics, and metabolomics have been used alone or in combination to discover genes and networks underlying various traits of interest in tomato. Examples of these are rootstock grafting (Ntatsi et al ., ), effect of root mycorhization on fruit quality (Zouari et al ., ), meristem maturation and inflorescence architecture (Park et al ., ; Soyk et al ., ), leaf morphology and thickness (Koenig et al ., ; Coneva et al ., ), glandular trichome metabolism (Balcke et al ., ), seed composition (Toubiana et al ., ), fruit set and parthenocarpy (Wang et al ., ; Ruiu et al ., ), and fruit development, ripening, and composition (Carrari et al ., ; Faurobert et al ., ; Mintz‐Oron et al ., ; Mounet et al ., ; Matas et al ., ; Osorio et al ., ; Itkin et al ., ; Pan et al ., ; Pattison et al ., ; Fernandez‐Moreno et al ., ; Szymanski et al ., ; Li et al ., ; Shinozaki et al ., ; Stevens et al ., ). While fruit studies outnumber all others, considerable efforts have also been devoted to the study of abiotic stress, including heat (Keller and Simm, ), cold (Cruz‐Mendívil et al ., ; Barrero‐Gil et al ., ; Ntatsi et al ., ), water limitation (Albert et al ., ), salinity stress (Zhang et al ., ) and nutrient deficiency (Zamboni et al ., ), and of plant reaction to biotic stress, causes of which include viruses (Ramesh et al ., ), bacteria (French et al ., ), fungi (Blanco‐Ulate et al ., ; Ghosh et al ., ), and nematodes (Święcicka et al ., ).…”