Objective
Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin, the major enzyme responsible for endogenous fibrinolysis. In some populations, elevated plasma levels of tPA have been associated with myocardial infarction and other cardiovascular diseases (CVD). We conducted a meta-analysis of genome-wide association studies (GWAS) to identify novel correlates of circulating levels of tPA.
Approach and Results
Fourteen cohort studies with tPA measures (N=26,929) contributed to the meta-analysis. Three loci were significantly associated with circulating tPA levels (P <5.0×10−8). The first locus is on 6q24.3, with the lead SNP (rs9399599, P=2.9×10−14) within STXBP5. The second locus is on 8p11.21. The lead SNP (rs3136739, P=1.3×10−9) is intronic to POLB and less than 200kb away from the tPA encoding gene PLAT. We identified a non-synonymous SNP (rs2020921) in modest LD with rs3136739 (r2 = 0.50) within exon 5 of PLAT (P=2.0×10−8). The third locus is on 12q24.33, with the lead SNP (rs7301826, P=1.0×10−9) within intron 7 of STX2. We further found evidence for association of lead SNPs in STXBP5 and STX2 with expression levels of the respective transcripts. In in vitro cell studies, silencing STXBP5 decreased release of tPA from vascular endothelial cells, while silencing of STX2 increased tPA release. Through an in-silico lookup, we found no associations of the three lead SNPs with coronary artery disease or stroke.
Conclusions
We identified three loci associated with circulating tPA levels, the PLAT region, STXBP5 and STX2. Our functional studies implicate a novel role for STXBP5 and STX2 in regulating tPA release.