Background: Chronic obstructive pulmonary disease (COPD) is a complex pulmonary disease. Cytochrome P450 family 4 subfamily F member 2 (CYP4F2) belongs to cytochrome P450 superfamily of enzymes responsible for metabolism, its single nucleotide polymorphisms (SNPs) were reported to be involved in metabolism in the development of many diseases. The study aimed to assess the relation between CYP4F2 SNPs and COPD risk in the Hainan Han population. Method: We genotyped five SNPs in CYP4F2 in 313 cases and 508 controls by Agena MassARRAY assay. The association between CYP4F2 SNPs and COPD risk were assessed by χ 2 test and genetic models. Besides, logistic regression analysis was introduced into the calculation for odds ratio (OR) and 95% confidence intervals (CIs). Results: Allele model analysis indicated that rs3093203 A was significantly correlated with an increased risk of COPD. Also, rs3093193 G and rs3093110 G were associated with a reduced COPD risk. In the genetic models, we found that rs3093203 was related to an increased COPD risk, while rs3093193 and rs3093110 were related to a reduced risk of COPD. After gender stratification, rs3093203, rs3093193 and rs3093110 showed the association with COPD risk in males. With smoking stratification, rs3093144 was significantly associated with an increased risk of COPD in smokers. CYP4F2 SNPs were significantly associated with COPD risk. Conclusions: Our findings illustrated potential associations between CYP4F2 polymorphisms and COPD risk. However, large-scale and well-designed studies are needed to determine conclusively the association between the CYP4F2 SNPs and COPD risk.