Wheat-Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL, carriers of Pm21 and PmV, respectively, confer high resistance to wheat powdery mildew. For better understanding of the difference in genetic effect between them, a RIL population was constructed based on the cross between "Yangmai 18" carrying T6V#2S·6AL and "Yangmai 22" carrying T6V#4S·6DL. Analysis of distribution of the translocations showed that T6V#2S·6AL is much more transmittable than T6V#4S·6DL. By comparing their effects on main agronomic traits, we firstly found that T6V#2S·6AL contributes greatly to top spikelet fecundity, but causes a decrease of 6.7%-10.5% of spike number. No stable effects of T6V#4S·6DL on agronomic traits were found, except for positive effect on plant height. Excitingly, a new recombinant, T6V#4S-6V#2S·6AL carrying PmV, was screened and proved to have a higher transmission rate than the original translocation T6V#4S·6DL, which will greatly promote the utilization of PmV.The above conclusions of this research will provide important guidance for utilization of Pm21 and PmV more effectively, in wheat powdery mildew resistance breeding.
K E Y W O R D Sgenetic effects, molecular markers, powdery mildew, recombinants, T6V#2S·6AL, T6V#4S·6DL