SummaryGermline stem cells (GSCs) in Drosophila are a valuable model to explore of how adult stem cells are regulated in vivo. Genetic dissection of this system has shown that stem cell fate is determined and maintained by the stem cell's somatic microenvironment or niche. In Drosophila gonads, the stem cell niche-the cap cell cluster in females and the hub in males-acts as a signaling center to recruit GSCs from among a small population of undifferentiated primordial germ cells (PGCs). Shortrange signals from the niche specify and regulate stem cell fate by maintaining the undifferentiated state of the PGCs next to the niche. Germline cells that do not receive the niche signals because of their location assume the default fate and differentiate. Once GSCs are specified, adherens junctions maintain close association between the stem cells and their niche and help to orient stem cell division so that one daughter is displaced from the niche and differentiates. In females, stem cell fate depends on bone morphogenetic protein (BMP) signals from the cap cells; in males, hub cells express the cytokine-like ligand Unpaired, which activates the Janus kinase-signal transducers and activators of transcription (Jak-Stat) pathway in stem cells. Although the signaling pathways operating between the niche and stem cells are different, there are common general features in both males and females, including the arrangement of cell types, many of the genes used, and the logic of the system that maintains stem cell fate.
KeywordsDrosophila; germline stem cell; GSC; PGC; primordial germ cell; stem cell fate; stem cell niche
IntroductionStem cells are defined by their capacity to self-renew and to generate daughters that differentiate into one or more terminal cell types. Proper regulation of this property is critical for animal development, growth control, and reproduction. Understanding stem cell function is potentially very important for future developments in gene therapies and regenerative medicine. Research in Drosophila on germline stem cells (GSCs) has been instrumental in defining the important function of the stem cell's somatic microenvironment or niche in the control of its division and self-renewal (1,2). The Drosophila germline is an excellent model of stem cell biology because the system is genetically tractable, the sterility and rudimentary gonads resulting from GSC loss are easily recognized, and the stem cells can be easily identified based on molecular markers and position in the gonad. Germline morphology and development, from embryogenesis to the differentiation of gametes in adult flies, has been well characterized and offers a solid basis for the study of GSC fate determination, maintenance, and differentiation.Drosophila GSCs are derived from embryonic pole cells, the first cell type defined in the embryo. They migrate from the posterior to meet the somatic gonadal precursors (SGPs) and form the embryonic gonad, a simple structure made up of about ten primordial germ cells (PGCs) intermingled with and surr...