Numerous studies in plants have shown the vital roles of MYB transcription factors in signal transduction, developmental regulation, biotic/abiotic stress responses and secondary metabolism regulation. However, less is known about the functions of MYBs in Ganoderma. In this study, five medicinal macrofungi of genus Ganoderma were subjected to a genome-wide comparative analysis of MYB genes. A total of 75 MYB genes were identified and classified into four types: 1R-MYBs (52), 2R-MYBs (19), 3R-MYBs (2) and 4R-MYBs (2). Gene structure analysis revealed varying exon numbers (3-14) and intron lengths (7-1058 bp), and noncanonical GC-AG introns were detected in G. lucidum and G. sinense. In a phylogenetic analysis, 69 out of 75 MYB genes were clustered into 15 subgroups, and both single-copy orthologous genes and duplicated genes were identified. The promoters of the MYB genes harboured multiple cis-elements, and specific genes were co-expressed with the G. lucidum MYB genes, indicating the potential roles of these MYB genes in stress response, development and metabolism. This comprehensive and systematic study of MYB family members provides a reference and solid foundation for further functional analysis of MYB genes in Ganoderma species.