Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Phylogeny, combined with trait-based measures, offers insights into parasite sharing among hosts. However, the specific traits that mediate transmission and the aspects of host community diversity that most effectively explain parasite infection rates remain unclear, even for the Bartonella genus, a vector-borne bacteria that causes persistent blood infections in vertebrates. Methods This study investigated the association between rodent host traits and Bartonella infection, as well as how rodent community diversity affects the odds of infection in the Atlantic Forest, using generalized linear models. Additionally, we assessed how host traits and phylogenetic similarities influence Bartonella infection among mammal species in Brazil. To this end, rodents were sampled from ten municipalities in Rio de Janeiro, southeastern Brazil. Then, we calculated several diversity indices for each community, including Rényi’s diversity profiles, Fisher’s alpha, Rao’s quadratic entropy (RaoQ), Functional Diversity (FDis), Functional Richness (FRic), and Functional Evenness (FEve). Finally, we compiled a network encompassing all known interactions between mammal species and Bartonella lineages recorded in Brazil. Results We found no significant relationship between diversity indices and the odds of Bartonella infection in rodent communities. Furthermore, there was no statistical support for the influence of individual-level traits (e.g., body length, sex, and age) or species-level ecological traits (e.g., locomotor habitat, dietary guild, and activity period) on Bartonella infection in rodents. A country-scale analysis, considering all mammal species, revealed no effect of host traits or phylogeny on Bartonella infection. Conclusions This study highlighted wild mammals that share Bartonella lineages with livestock, synanthropic, and domestic animals, underscoring the complexity of their maintenance cycle within the One Health framework. A key question arising from our findings is whether molecular host–cell interactions outweigh host body mass and ecological traits in influencing Bartonella infection, potentially opening new avenues for understanding host–parasite relationships and infection ecology. Graphical Abstract
Background Phylogeny, combined with trait-based measures, offers insights into parasite sharing among hosts. However, the specific traits that mediate transmission and the aspects of host community diversity that most effectively explain parasite infection rates remain unclear, even for the Bartonella genus, a vector-borne bacteria that causes persistent blood infections in vertebrates. Methods This study investigated the association between rodent host traits and Bartonella infection, as well as how rodent community diversity affects the odds of infection in the Atlantic Forest, using generalized linear models. Additionally, we assessed how host traits and phylogenetic similarities influence Bartonella infection among mammal species in Brazil. To this end, rodents were sampled from ten municipalities in Rio de Janeiro, southeastern Brazil. Then, we calculated several diversity indices for each community, including Rényi’s diversity profiles, Fisher’s alpha, Rao’s quadratic entropy (RaoQ), Functional Diversity (FDis), Functional Richness (FRic), and Functional Evenness (FEve). Finally, we compiled a network encompassing all known interactions between mammal species and Bartonella lineages recorded in Brazil. Results We found no significant relationship between diversity indices and the odds of Bartonella infection in rodent communities. Furthermore, there was no statistical support for the influence of individual-level traits (e.g., body length, sex, and age) or species-level ecological traits (e.g., locomotor habitat, dietary guild, and activity period) on Bartonella infection in rodents. A country-scale analysis, considering all mammal species, revealed no effect of host traits or phylogeny on Bartonella infection. Conclusions This study highlighted wild mammals that share Bartonella lineages with livestock, synanthropic, and domestic animals, underscoring the complexity of their maintenance cycle within the One Health framework. A key question arising from our findings is whether molecular host–cell interactions outweigh host body mass and ecological traits in influencing Bartonella infection, potentially opening new avenues for understanding host–parasite relationships and infection ecology. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.