Abstract. Background. Mycobacterium avium subsp. hominissuis (MAH) is an important pathogen responsible for most of the human-associated nontuberculous mycobacteria infections. Over the past few decades the incidence of MAH infections is increasing in Italy, as in many countries worldwide. The present study is aimed to elucidate the genetic characteristics of MAH strains isolated from human patients using VNTR typing and to show the genetic relatedness among them. Methods. The genetic diversity of 108 human isolates of MAH was determined by VNTR analysis targeting 8 loci, coded 32, 292, X3, 25, 3, 7, 10 and 47. Results. The VNTR analysis revealed 25 distinct VNTR patterns; of these, 13 patterns were unique, while 12 patterns were shared by 2 or more isolates, thus yielding 12 clusters including a total of 95 isolates. The discriminatory power of our VNTR analysis yielded an HGDI of 0.990, indicating that VNTR typing has an excellent discriminatory power. No association of a particular VNTR pattern with a particular clinical feature, such as the disseminated, pulmonary or extrapulmonary type of infection, was observed. Minimum spanning tree analysis showed that 21 VNTR patterns, occurring either as clustered or unique isolates, differed from the nearest one for one allelic variation. Conclusions. The results obtained through the VNTR analysis showed that most MAH strains displayed a close genetic relationship. This high phylogenetic proximity of the VNTR loci over a long time period supports the concept that the MAH genotype is highly homogeneous in our geographical area, suggesting the hypothesis of the presence of possible sources of infection and transmission pathways at the local level.