To improve sheep breeding and conservation of genetic resources, the mitochondrial DNA control region (mtDNA CR) of 399 sequences of African indigenous sheep breeds from previously published research articles were meta-analyzed to elucidate their phylogenetic relationship, diversity, and demographic history. A total of 272 haplotypes were found, of which 207 were unique and a high level of mtDNA CR variability was observed. Generally, the number of polymorphic sites, nucleotide and haplotype diversity were high (284, 0.254 ± 0.012 and 0.993 ± 0.002, respectively). The median-joining (MJ) network of haplotypes produced three major haplogroups (A, B and C), with haplogroup B being dominant. A mixture of populations suggests a common matrilineal origin and lack of and/or a weak phylogeographic structure. Mismatch analysis showed recent expansion of North African breeds, whereas East African and continental populations exhibited selection pressures for adaptation. A slight historical genetic difference was also observed between the fat tail and thin tail sheep breeds. However, further investigations are required using more samples and long sequence segments to achieve deeper levels of conclusions on the African sheep phylogenetic relationship. The present meta-analysis results contribute to the general understanding of African native sheep populations for improved management of sheep genetic resources.