2011
DOI: 10.1186/1744-8069-7-96
|View full text |Cite
|
Sign up to set email alerts
|

Genetic Enhancement of Behavioral Itch Responses in Mice Lacking Phosphoinositide 3-Kinase-γ (PI3Kγ)

Abstract: Phosphoinositide 3-kinases (PI3Ks) are important for synaptic plasticity and various brain functions. The only class IB isoform of PI3K, PI3Kγ, has received the most attention due to its unique roles in synaptic plasticity and cognition. However, the potential role of PI3Kγ in sensory transmission, such as pain and itch has not been examined. In this study, we present the evidence for the first time, that genetic deletion of PI3Kγ enhanced scratching behaviours in histamine-dependent and protease-activated rec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2012
2012
2022
2022

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 31 publications
(62 reference statements)
0
4
0
Order By: Relevance
“…Phosphatidylinositol signaling is a second messenger cascade involving the sequential phosphorylation of phosphatidylinositol 4-phosphate (PIP) to generate phosphatidylinositol 4,5-bisphosphate (PIP2) via PIP5' kinases (phosphatidylinositol-5-OH kinase; PIP5K), and then phosphorylation of PIP2 via PI3 kinases (phosphatidylinositol-3-OH kinase; PI3K) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). In mammalian systems phospholipid signaling has been implicated in regulating pain perception [11][13], TRPV1 function [14][21], and itch [22], but how phosphatidylinositol signaling is involved in mammalian nociception is controversial, with data suggesting for example that PIP2 may either increase or decrease TRPV1 function [23], [24]. Based on the suggested involvement of phospholipid signaling in our conserved functional pain network, and in context of the controversial role for phosphatidylinositol signaling in pain perception, we employed genetic approaches to evaluate the role of phosphatidylinositol signaling in mammalian nociception.…”
Section: Introductionmentioning
confidence: 99%
“…Phosphatidylinositol signaling is a second messenger cascade involving the sequential phosphorylation of phosphatidylinositol 4-phosphate (PIP) to generate phosphatidylinositol 4,5-bisphosphate (PIP2) via PIP5' kinases (phosphatidylinositol-5-OH kinase; PIP5K), and then phosphorylation of PIP2 via PI3 kinases (phosphatidylinositol-3-OH kinase; PI3K) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). In mammalian systems phospholipid signaling has been implicated in regulating pain perception [11][13], TRPV1 function [14][21], and itch [22], but how phosphatidylinositol signaling is involved in mammalian nociception is controversial, with data suggesting for example that PIP2 may either increase or decrease TRPV1 function [23], [24]. Based on the suggested involvement of phospholipid signaling in our conserved functional pain network, and in context of the controversial role for phosphatidylinositol signaling in pain perception, we employed genetic approaches to evaluate the role of phosphatidylinositol signaling in mammalian nociception.…”
Section: Introductionmentioning
confidence: 99%
“…Two cameras were placed at two neighbor sides of the cage between the iPad and the cage wall. The itching demonstrator mouse was chosen randomly and 500 μg histamine (Sigma, USA) dissolved in 50 μl saline was injected subcutaneously to the nape of its neck [1, 4, 11, 12]. The typical scratching activity was recorded and looped on the iPads (Apple, USA).…”
Section: Methodsmentioning
confidence: 99%
“…However (unlike the PIRT, PLCβ3, TrpV1 and TrpA1) loss of PI3Kγ in mice gives rise to more, not less itch. Furthermore, though PI3Kγ-deficient mice show significantly elevated scratching behavior in response to PAR-2 and histamine, they show normal responses in assays for acute pain (Lee et al, 2011). Thus, loss of PI3Kγ appears to be relatively specific to itch.…”
Section: Ngf Signaling Is Required For the Survival Of Pruritoceptorsmentioning
confidence: 97%