The dispersal of an endangered beetle, Osmoderma eremita, that lives in tree hollows, was studied by mark-release-recapture with pitfall traps. As only a small proportion of all dispersals is observed by this method, a simulation model was constructed to estimate the dispersal rate per individual. The model results suggest that 15% of the adults leave the original tree for another hollow tree, and consequently most individuals remain in the same tree throughout their entire life. This suggests that each hollow tree sustains a local population with limited connection with the populations in surrounding trees. It supports the view that O. eremita has a metapopulation structure, with each tree possibly sustaining a local population, and with the population in an assemblage of trees forming a metapopulation. Low dispersal rate and range make the species vulnerable to habitat fragmentation, probably at a scale of only a few hundred meters.