Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Neurodevelopmental disorders of genetic etiology are a highly diverse set of congenital recurrent complications triggered by irregularities in the basic tenets of brain development. Methods: We present whole exome sequencing analysis and expression characteristics of the probands from four unrelated Pakistani consanguineous families with facial dysmorphism, neurodevelopmental, ophthalmic, auditory, verbal, psychiatric, behavioral, dental, and skeletal manifestations otherwise unexplained by clinical spectrum. Results: Whole exome sequencing identifies a novel, bi-allelic, missense variant in the HGSNAT gene [NM_152419.3: c.1411G > A (p. Glu471Lys) exon 14] for proband family E-1 and a rare, bi-allelic, non-frameshift variant in the KDM6B gene [NM_001348716.2: c.786_791dupACCACC (p. Pro263_Pro264dup) exon 10] for proband family E-2, and a novel, mono-allelic, missense variant in the LMNA gene [NM_170707.4: c. 1328 A > G (p. Glu443Gly) exon 8] for proband family E-3 and an ultra-rare, mono-allelic, missense variant in the WFS1 gene [NM_006005.3: c.2131G > A (p. Asp711Asn) exon 8] for proband family E-4. Protein modelling shows conformation and size modifications in mutated residues causing damage to the conserved domains expressed as neurocognitive pathology. Conclusions: The current study broadens the distinctly cultural and genetically inbred pool of the Pakistani population for harmful mutations, contributing to the ever-expanding phenotypic palette. The greatest aspirations are molecular genetic profiling and personalized treatment for individuals with complex neurological symptoms to improve their life activities.
Background: Neurodevelopmental disorders of genetic etiology are a highly diverse set of congenital recurrent complications triggered by irregularities in the basic tenets of brain development. Methods: We present whole exome sequencing analysis and expression characteristics of the probands from four unrelated Pakistani consanguineous families with facial dysmorphism, neurodevelopmental, ophthalmic, auditory, verbal, psychiatric, behavioral, dental, and skeletal manifestations otherwise unexplained by clinical spectrum. Results: Whole exome sequencing identifies a novel, bi-allelic, missense variant in the HGSNAT gene [NM_152419.3: c.1411G > A (p. Glu471Lys) exon 14] for proband family E-1 and a rare, bi-allelic, non-frameshift variant in the KDM6B gene [NM_001348716.2: c.786_791dupACCACC (p. Pro263_Pro264dup) exon 10] for proband family E-2, and a novel, mono-allelic, missense variant in the LMNA gene [NM_170707.4: c. 1328 A > G (p. Glu443Gly) exon 8] for proband family E-3 and an ultra-rare, mono-allelic, missense variant in the WFS1 gene [NM_006005.3: c.2131G > A (p. Asp711Asn) exon 8] for proband family E-4. Protein modelling shows conformation and size modifications in mutated residues causing damage to the conserved domains expressed as neurocognitive pathology. Conclusions: The current study broadens the distinctly cultural and genetically inbred pool of the Pakistani population for harmful mutations, contributing to the ever-expanding phenotypic palette. The greatest aspirations are molecular genetic profiling and personalized treatment for individuals with complex neurological symptoms to improve their life activities.
The study of cognitive divergence in twin fetuses offers a unique window into the interplay of genetic, environmental, and developmental factors influencing early brain development. This research investigates the prenatal origins of cognitive differences, focusing on indicators such as brain volume asymmetry, neural connectivity, and behavioral patterns. By examining these factors through advanced imaging techniques like fetal MRI and ultrasound, the study explores how cognitive divergence manifests in twin fetuses, potentially affecting postnatal IQ and developmental trajectories. Key areas of focus include the role of genetic variance, in-utero environmental disparities, and the impact of placental sharing on neural development. Additionally, the research addresses methodological challenges in assessing cognitive markers during the prenatal period and explores implications for early intervention strategies. By shedding light on the earliest stages of cognitive differentiation, this study aims to advance our understanding of developmental neuroscience and inform approaches to optimize cognitive outcomes in twin populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.