The autoantigen Ku, composed of subunits Ku70 and Ku86, is necessary for repair of DNA double-strand breaks by nonhomologous end joining. Similarly, Ku participates in repair of DNA double-strand breaks that occur during V(D)J recombination, and it is therefore required for the development of B and T lymphocytes. Although previous studies have identified the DNA-binding activities of Ku, little is known concerning its dynamics, such as the mobility of Ku in the nucleus and its rate of association with substrates. To address this question, fluorescence photobleaching experiments were performed using HeLa cells and B cells expressing a green fluorescent protein (GFP) fusion construct of either Ku70 or Ku86. The results show that Ku moves rapidly throughout the nucleus even following irradiation of the cells. However, the rate of diffusion of Ku was âŒ100-fold slower than that predicted from its size. Association of Ku-GFP with a filamentous nuclear structure was also evident, and nuclear extraction experiments suggest that this represents nuclear matrix. A central domain of Ku70 containing its DNA-binding and heterodimerization regions and its nuclear localization signal shows that this alone is sufficient for the observed mobility of Ku70-GFP and its association with nuclear matrix. These data suggest the mobility of Ku is characterized by a transient, high flux association with nuclear substrates that includes both DNA and the nuclear matrix and may represent a mechanism for repair of double-strand breaks using the nuclear matrix as a scaffold.