2014
DOI: 10.1166/asl.2014.5283
|View full text |Cite
|
Sign up to set email alerts
|

Genetic Feature Selection for Software Defect Prediction

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
15
0
5

Year Published

2017
2017
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 46 publications
(20 citation statements)
references
References 23 publications
0
15
0
5
Order By: Relevance
“…AUC chosen because of clear statistical interpretation. Measurement of probability in fault-prone class given a higher rating compared non-fault-prone class [33]. In addition AUC has the potential to significantly increase convergence throughout empirical experiments in the prediction of software defects [34], because it separates predictive performance from operating conditions and represents the general size of the prediction.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…AUC chosen because of clear statistical interpretation. Measurement of probability in fault-prone class given a higher rating compared non-fault-prone class [33]. In addition AUC has the potential to significantly increase convergence throughout empirical experiments in the prediction of software defects [34], because it separates predictive performance from operating conditions and represents the general size of the prediction.…”
Section: Resultsmentioning
confidence: 99%
“…Weight Information Gain (WIG) is a method of weighting each of the most common variables of evaluation attributes [33]. To calculate information gain, first step are understand another rule called entropy.…”
Section: Weight Information Gain Algorithmmentioning
confidence: 99%
“…Wahono and Herman [44] introduced a novel software defect predictor that depended on integration of a the genetic algorithm and the bagging technique. GA was utilized to choose the optimal and pertinent feature subset.…”
Section: Software Defect Prediction Depending On Ensemble Modelsmentioning
confidence: 99%
“…TSC adalah salah satu algoritma pengelompokan yang dikembangkan pertama kali oleh (Chiu, Fang, Chen, Wang, & Jeris, 2001) dan dirancang untuk menangani kumpulan data yang sangat besar. TSC mampu menangani variabel kontinu dan variabel kategorikal (Chiu et al, 2001), (Satish & Bharadhwaj, 2010 Dalam penelitian ini, metode yang diusulkan dievaluasi dengan menggunakan efektivitas classifier berdasarkan confusion matrix dengan evaluasi utama adalah area under the curve (AUC) seperti yang digunakan oleh (Laradji, Alshayeb, & Ghouti, 2015), (Rana, Mian, & Shamail, 2015), (Czibula, Marian, & Czibula, 2014), (Wahono & Herman, 2014), (Arar & Ayan, 2015) AUC memiliki potensi untuk secara signifikan meningkatkan konvergensi di seluruh eksperimen empiris dalam prediksi cacat perangkat lunak (Laradji et al, 2015) dan penggunaan AUC untuk meningkatkan perbandingan studi silang (Lessmann, Baesens, Mues, & Pietsch, 2008). Panduan dasar untuk mengklasifikasikan keakuratan tes diagnostik berdasarkan AUC sebagaimana dinyatakan oleh (Gorunescu, 2011) sebagai berikut:…”
Section: Metode Penelitianunclassified
“…Evaluasi lain dari metode yang diusulkan yaitu: recall atau sensitivity (SN) seperti yang digunakan oleh (Laradji et al, 2015), (Czibula et al, 2014), (Wahono & Herman, 2014); specipies (SP) dan precision (PR) seperti yang digunakan oleh (Czibula et al, 2014), (Wahono & Herman, 2014).…”
Section: Metode Penelitianunclassified