Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Information theory and entropy loss predict deeper more hierarchical software will be more robust. Suggesting silent errors and equivalent mutations will be more common in deeper code, highly structured code will be hard to test, so explaining best practise preference for unit testing of small methods rather than system wide analysis. Using the genetic improvement (GI) tool MAGPIE, we measure the impact of source code mutations and how this varies with execution depth in two diverse multi-level nested software. gem5 is a million line single threaded state-of-the-art C++ discrete time VLSI circuit simulator, whilst PARSEC VIPS is a non-deterministic parallel computing multi-threaded image processing benchmark written in C. More than 28–53% of mutants compile and generate identical results to the original program. We observe 12% and 16% Failed Disruption Propagation (FDP). Excluding internal errors, exceptions and asserts, here most faults below about 30 nested function levels which are Executed and Infect data or divert control flow are not Propagated to the output, i.e. these deep PIE changes have no visible external effect. Suggesting automatic software engineering on highly structured code will be hard.
Information theory and entropy loss predict deeper more hierarchical software will be more robust. Suggesting silent errors and equivalent mutations will be more common in deeper code, highly structured code will be hard to test, so explaining best practise preference for unit testing of small methods rather than system wide analysis. Using the genetic improvement (GI) tool MAGPIE, we measure the impact of source code mutations and how this varies with execution depth in two diverse multi-level nested software. gem5 is a million line single threaded state-of-the-art C++ discrete time VLSI circuit simulator, whilst PARSEC VIPS is a non-deterministic parallel computing multi-threaded image processing benchmark written in C. More than 28–53% of mutants compile and generate identical results to the original program. We observe 12% and 16% Failed Disruption Propagation (FDP). Excluding internal errors, exceptions and asserts, here most faults below about 30 nested function levels which are Executed and Infect data or divert control flow are not Propagated to the output, i.e. these deep PIE changes have no visible external effect. Suggesting automatic software engineering on highly structured code will be hard.
Lenski’s experiments with E. Coli show Biology can sustain continual evolutionary improvement. However long term evolutionary experiments (LTEE) with evolutionary computing find that information theory’s failed disruption propagation (FDP) in deeply nested genetic programming (GP) hierarchies can greatly slow adaptation. We propose that researchers aiming at embodied artificial intelligence should control software robustness by using porous high surface area geometrical architectures, perhaps composed of many shallow mangrove like tree structures intimately linked to their data rich fitness environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.