HighlightsThe ILF, AF and VOF predict the spatial layout of reading-related responses in VTC Gray matter microstructure improves the prediction of reading-related responses Fascicles and gray matter structure together predict the location of the VWFA Abstract Reading-related responses in the lateral ventral temporal cortex (VTC) show a consistent spatial layout across individuals, which is puzzling, since reading skills are acquired during childhood. Here, we tested the hypothesis that white matter fascicles and gray matter microstructure predict the location of reading-related responses in lateral VTC. We obtained functional (fMRI), diffusion (dMRI), and quantitative (qMRI) magnetic resonance imaging data in 30 adults. fMRI was used to map reading-related responses by contrasting responses in a reading task with those in adding and color tasks; dMRI was used to identify the brain's fascicles and to map their endpoints density in lateral VTC; qMRI was used to measure proton relaxation time (T1), which depends on cortical tissue microstructure. We fit linear models that predict readingrelated responses in lateral VTC from endpoint density and T1 and used leave-one-subject-out cross-validation to assess prediction accuracy. First, by using a subset of our participants (N=10, feature selection set), we find that i) endpoint density of the arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), and vertical occipital fasciculus (VOF) are significant predictors of reading-related responses, and ii) cortical T1 of lateral VTC further improves the predictions of the fascicle model. Next, in the remaining 20 participants (validation set), we showed that a linear model that includes T1, AF, ILF and VOF significantly predicts i) the map of reading-related responses across lateral VTC and ii) the location of the visual word form area, a region critical for reading. Overall, our data-driven approach reveals that the AF, ILF, VOF and cortical microstructure have a consistent spatial relationship with an individual's reading-related responses in lateral VTC.