Human gut microbiota are recognized as critical players in both metabolic disease and drug metabolism. However, medication−microbiota interactions in cardiometabolic diseases are not well understood. To gain a comprehensive understanding of how medication intake impacts the gut microbiota, we investigated the association of microbial structure with the use of single or multiple medications in a cohort of 134 middle-aged adults diagnosed with cardiometabolic disease, recruited from Alberta's Tomorrow Project. Predominant cardiometabolic prescription medication classes (12 total) were included in our analysis. Multivariate Association with Linear Model (MaAsLin2) was employed and results were corrected for age, BMI, sex, and diet to evaluate the relationship between microbial features and single-or multimedication use. Highly individualized microbiota profiles were observed across participants, and increasing medication use was negatively correlated with α-diversity. A total of 46 associations were identified between microbial composition and single medications, exemplified by the depletion of Akkermansia muciniphila by β-blockers and statins, and the enrichment of Escherichia/Shigella and depletion of Bacteroides xylanisolvens by metformin. Metagenomics prediction further indicated alterations in microbial functions associated with single medications such as the depletion of enzymes involved in energy metabolism encoded by Eggerthella lenta due to β-blocker use. Specific dual medication combinations also had profound impacts, including the depletion of Romboutsia and Butyriciocccus by statin plus metformin. Together, these results show reductions in bacterial diversity as well as species and microbial functional potential associated with both single-and multimedication use in cardiometabolic disease.