2004
DOI: 10.1073/pnas.0407783101
|View full text |Cite
|
Sign up to set email alerts
|

Genetic networks with canalyzing Boolean rules are always stable

Abstract: We determine stability and attractor properties of random Boolean genetic network models with canalyzing rules for a variety of architectures. For all power law, exponential, and flat in-degree distributions, we find that the networks are dynamically stable. Furthermore, for architectures with few inputs per node, the dynamics of the networks is close to critical. In addition, the fraction of genes that are active decreases with the number of inputs per node. These results are based upon investigating ensemble… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

4
266
3
2

Year Published

2007
2007
2016
2016

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 294 publications
(275 citation statements)
references
References 13 publications
4
266
3
2
Order By: Relevance
“…Here, the effective connectivity of the gene depends on the current state of the network. More complex categories are also possible, such as the nested canalizing functions proposed by Kauffman [19,26]. Since the fraction of canalizing functions drops rapidly with k, as shown in Ref.…”
Section: Introductionmentioning
confidence: 99%
“…Here, the effective connectivity of the gene depends on the current state of the network. More complex categories are also possible, such as the nested canalizing functions proposed by Kauffman [19,26]. Since the fraction of canalizing functions drops rapidly with k, as shown in Ref.…”
Section: Introductionmentioning
confidence: 99%
“…The yeast cell-cycle is remarkably robust in this sense [17]. Other approaches to assessing robustness in biological networks include local stability and bifurcation analyses [8], stability under node state perturbation [3,11] and probabilistic Boolean networks [20]. In this work we will concentrate on the robustness under stochastically varying processing times (for protein concentration buildup and decay) as was considered in [15].…”
Section: Introductionmentioning
confidence: 99%
“…Soit C le nombre de ses composantes fortement connexes comportant un circuit positif, A le nombre de ses attracteurs, K = I/n sa connectivité, c'est-à-dire le rapport entre les nombres I d'interactions et n de gènes, et P le nombre de ses circuits positifs, en ne comptant qu'une fois ceux qui partagent un gène. Nous avons alors les conjectures : 2 P ≥ A ≥ 2 C et A ≥ O(n 1/2 ), valables dans les graphes de type Hopfield, dont les fonctions de transition sont du type majorité pondérée [15][16][17][18][19][20][21][22] et dans les graphes de type Kauffman, dont les fonctions de transition sont toutes les fonctions booléennes possibles [6,[23][24][25]. Dans les réseaux constitués de couches successives de gènes se co-exprimant, on peut montrer que la borne supérieure peut être remplacée par 2 V , où V est le nombre de gènes de la première couche [22].…”
Section: Représentation Mathématique D'un Système Dynamique Complexeunclassified