Bone marrow stromal antigen 2 (BST-2, also known as tetherin) is a recently identified interferon-inducible host restriction factor that can block the production of enveloped viruses by trapping virus particles at the cell surface. This antiviral effect is counteracted by the human immunodeficiency virus type 1 (HIV-1) accessory protein viral protein U (Vpu). Here we show that HIV-1 Vpu physically interacts with BST-2 through their mutual transmembrane domains and leads to the degradation of this host factor via a lysosomal, not proteasomal, pathway. The degradation is partially controlled by a cellular protein, -transducin repeat-containing protein (TrCP), which is known to be required for the Vpu-induced degradation of CD4. Importantly, targeting of BST-2 by Vpu occurs at the plasma membrane followed by the active internalization of this host protein by Vpu independently of constitutive endocytosis. Thus, the primary site of action of Vpu is the plasma membrane, where Vpu targets and internalizes cell-surface BST-2 through transmembrane interactions, leading to lysosomal degradation, partially in a TrCP-dependent manner. Also, we propose the following configuration of BST-2 in tethering virions to the cell surface; each of the dimerized BST-2 molecules acts as a bridge between viral and cell membranes.
Viral protein U (Vpu)2 is an 81-amino acid type I integral membrane phosphoprotein expressed by human immunodeficiency virus type 1 (HIV-1) (1, 2) and several simian immunodeficiency viruses (3-6). Vpu is not incorporated into virus particles (7), indicating that it acts exclusively in virus-producer cells. Indeed, Vpu is known to play two distinct roles during the later stages of infection. First, Vpu interacts with newly synthesized CD4 molecules complexed with the gp160 envelope glycoprotein precursor in the endoplasmic reticulum (8, 9) and recruits the -transducin repeat-containing protein 1 (TrCP-1) subunit of the Skp1-Cullin1-F-box ubiquitin ligase complex (10) as well as TrCP-2 (11) through its phosphoserine residues at positions 52 and 56 in the cytoplasmic (CT) domain (12,13). This event results in proteasome-mediated degradation of CD4 (10, 14, 15) allowing gp160 to resume transport toward the cell surface for virion incorporation. Second, Vpu mediates the enhancement of virion release (16 -18) in a cell type-dependent manner (e.g. HeLa cells require Vpu, whereas COS7 cells do not (19,20)), and its absence leads to the accumulation of viral particles at the cell surface (21).In contrast to the effect of Vpu on CD4 degradation, little had been known about the mechanism by which Vpu enhances the release of virions. The finding that HeLa-COS7 heterokaryons exhibited HeLa-type properties suggested that Vpu-responsive HeLa cells might harbor endogenous a restriction factor(s) that could be counteracted by this viral protein (22), as seen in Vifresponsive cells harboring the antiretroviral factor APOBEC3G counteracted by Vif (23). Neil et al. (24) showed that Vpu-deficient viral particles accumulated ...