Investigations into life history of microorganisms that cause plant diseases have been limited mostly to contexts where they are in interaction with plants, and with cropped or otherwise managed vegetation. Therefore, knowledge about the diversity of plant pathogens, about potential reservoirs of inoculum and about the processes that contribute to their survival and adaptation is limited to these contexts. The agro-centric perspective of plant pathogen life histories is incoherent with respect to the capacity of many of them to persist as saprophytes on various substrates. In this context we have investigated the ubiquity of the broad host range necrotrophic fungus Botrytis cinerea, outside of agricultural settings and have determined if the populations in these natural habitats can be distinguished phenotypically and phylogenetically from populations isolated from diseased crops. Over a period of 5 years, we isolated B. cinerea from 235 samples of various substrates collected in France including rainfall, snowpack, river, and lake water, epilithic biofilms in mountain streams, leaf litter and plant debris, rock surfaces, bird feathers and healthy wild plants from outside of agricultural fields. All substrates except rock surfaces harbored B. cinerea leading us to establish a collection of purified strains that were compared to B. cinerea from diseased tomato, grapes and various other crops in France. Phylogenetic comparisons of 321 strains from crop plants and 100 strains from environmental substrates based on sequences of 9 microsatellite markers revealed that strains from crops and the environment could not be distinguished. Furthermore, the genetic diversity of strains outside of agriculture was just as broad as within agriculture. In tests to determine the aggressiveness of strains on tomato stems, the mean disease severity caused by strains from environmental substrates was statistically identical to the severity of disease caused by strains from tomato, but was significantly greater than the severity caused by strains from grape or other crops. Our results suggest that highly diverse populations of this plant pathogen persist outside of agriculture in association with substrates other than plants and that this part of their life history is compatible with its capacity to maintain its potential as plant pathogen.