2014
DOI: 10.1162/evco_a_00110
|View full text |Cite
|
Sign up to set email alerts
|

Genetic Programming and Serial Processing for Time Series Classification

Abstract: This work describes an approach devised by the authors for time series classification. In our approach genetic programming is used in combination with a serial processing of data, where the last output is the result of the classification. The use of genetic programming for classification, although still a field where more research in needed, is not new. However, the application of genetic programming to classification tasks is normally done by considering the input data as a feature vector. That is, to the bes… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
3

Year Published

2016
2016
2022
2022

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(7 citation statements)
references
References 26 publications
0
4
0
3
Order By: Relevance
“…Alguns trabalhos aplicam computação evolucionária para executar previsão de series temporais [10], [1] e [7]. Estes trabalhos buscam criar um modelo de previsão utilizando a temática de populações através da PG.…”
Section: Modelo De Programação Genéticaunclassified
See 2 more Smart Citations
“…Alguns trabalhos aplicam computação evolucionária para executar previsão de series temporais [10], [1] e [7]. Estes trabalhos buscam criar um modelo de previsão utilizando a temática de populações através da PG.…”
Section: Modelo De Programação Genéticaunclassified
“…Já em [7] um algoritmo genéticoé aplicado em series temporais para detectar padrões nas séries de dados sobre terremotos. Em [1] a programação genéticaé utilizada para classificar séries temporais. Já em [6] um conjunto de experimentosé realizado para comparação da PG com métodos como ARIMA e alisamento exponencial.…”
Section: Modelo De Programação Genéticaunclassified
See 1 more Smart Citation
“…Table 4 presents the descriptive statistics of the input attributes. For simplicity, all the input attributes are then scaled to a range of [1,10] by dividing 10 or 100. Table 5 reports the average approximation accuracy for various algorithms, such as conventional GEP 5 and neural networks 13 , over 30 independent runs.…”
Section: Performance Analysis Of the Ogep Algorithmmentioning
confidence: 99%
“…Finally the best individual with highest fitness is selected as the final output. Numerical experiments demonstrate that GEP has a significantly better performance compared to genetic algorithm (GA) 27,30 and genetic programming (GP) 1,17 , and surpasses those conventional methods by more than two orders of magnitude 10,11,12 . However, GEP has also been shown to have certain disadvantages, such as slow convergence and low solution accuracy, particularly for problems with a high-dimensional and large space 4,6,24 .…”
Section: Introductionmentioning
confidence: 99%