The specific contribution of interleukin-17/interleukin-17 receptor (IL-17/IL-17R)-mediated responses in regulating host susceptibility against obligatory intracellular Chlamydia infection was investigated in C57BL/6 and C3H/HeN mice during Chlamydia muridarum respiratory infection. We demonstrated that Chlamydia stimulated IL-17/IL-17R-associated responses in both Chlamydia-resistant C57BL/6 and Chlamydia-susceptible C3H/HeN mice. However, C3H/HeN mice developed a significantly greater IL-17/IL-17R-associated response than C57BL/6 mice did. This was reflected by an increase in IL-17 mRNA expression, a higher recall IL-17 production from splenocytes upon antigen restimulation, and higher production of Chlamydia trachomatis is an obligate intracellular gram-negative bacterium that primarily infects epithelial cells lining the ocular, respiratory, and urogenital tract surfaces and causes many human diseases including trachoma, pneumonia, and pelvic inflammatory disease (2). Although effective antibiotics are available, the incidence of C. trachomatis infections continues to increase worldwide (41). In the United States alone, it is estimated that there are approximately 2.8 million new cases of urogenital C. trachomatis infection each year (58). An effective and safe Chlamydia vaccine is needed to address the global C. trachomatis epidemic, and a comprehensive understanding of the means of protective immunity and immunopathology of C. trachomatis infection is essential for vaccine development.C. trachomatis infection results in a wide variety of clinical manifestations, ranging from asymptomatic to mild or severe symptoms, acute or chronic inflammatory responses, and a wide range of chronic complications (5,47,59). Host genetic factors appear to be important in determining the outcome of Chlamydia infections. It has been reported that the increased incidence of Chlamydia-induced chronic diseases, such as tubal infertility and scarring trachoma, is correlated with certain human leukocyte antigen (HLA) haplotypes and polymorphism of genes encoding interleukin-10 (IL-10), CD14, and tumor necrosis factor alpha (6,7,16,25,44,54). However, how these specific genes are involved in shaping the specific immune responses during Chlamydia infection in humans remains unclear. As in humans, inbred mouse strains, such as, and DBA/2J (H-2 d ) mice respond to respiratory (1,39,40,63), genital (9-12, 52), and intraperitoneal (i.p.) (36) Chlamydia infections differently. C57BL/6 mice are regarded as a resistant strain, whereas BALB/c, DBA/2, and C3H/HeN mice are reported as susceptible strains with higher mortality, more prolonged bacterial burden, more severe tissue inflammatory responses (such as neutrophil infiltration), and higher rates of infertility following Chlamydia infection. Thus, these inbred mouse strains have been used extensively for identification of specific host factors that regulate immune responses and immune mechanisms underlying the pathogenesis of Chlamydia infection.Based on animal models (5,8,38,50) and hum...