Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Phytopathologists are actively researching the molecular basis of plant–pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant–microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant–pathogen interactions and discusses how these genome compartments enhance plants’ and pathogens’ evolutionary processes.
Phytopathologists are actively researching the molecular basis of plant–pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant–microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant–pathogen interactions and discusses how these genome compartments enhance plants’ and pathogens’ evolutionary processes.
Genetic engineering has revolutionized our ability to modify microorganisms for various applications in agriculture, medicine, and industry. This review examines recent advances in genetic engineering techniques for bacteria, fungi, and oomycetes, with a focus on CRISPR-Cas systems. In bacteria, CRISPR-Cas9 has enabled precise genome editing, enhancing applications in antibiotic production and metabolic engineering. For fungi, despite challenges associated with their complex cell structures, CRISPR/Cas9 has advanced the production of enzymes and secondary metabolites. In oomycetes, significant plant pathogens, modified Agrobacterium-mediated transformation, and CRISPR/Cas12a have contributed to developing disease-resistant crops. This review provides a comparative analysis of genetic engineering efficiencies across these microorganisms and addresses ethical and regulatory considerations. Future research directions include refining genetic tools to improve efficiency and expand applicability in non-model organisms. This comprehensive overview highlights the transformative potential of genetic engineering in microbiology and its implications for addressing global challenges in agriculture, medicine, and biotechnology.
Aspergillus niger is a robust microbial cell factory for organic acid production. However, the regulation of many industrially important pathways is still poorly understood. The regulation of the glucose oxidase (Gox) expression system, involved in the biosynthesis of gluconic acid, has recently been uncovered. The results of that study show hydrogen peroxide, a by-product of the extracellular conversion of glucose to gluconate, has a pivotal role as a signaling molecule in the induction of this system. In this study, the facilitated diffusion of hydrogen peroxide via aquaporin water channels (AQPs) was studied. AQPs are transmembrane proteins of the major intrinsic proteins (MIPs) superfamily. In addition to water and glycerol, they may also transport small solutes such as hydrogen peroxide. The genome sequence of A. niger N402 was screened for putative AQPs. Seven AQPs were found and could be classified into three main groups. One protein (AQPA) belonged to orthodox AQP, three (AQPB, AQPD, and AQPE) were grouped in aquaglyceroporins (AQGP), two (AQPC and AQPF) were in X-intrinsic proteins (XIPs), and the other (AQPG) could not be classified. Their ability to facilitate diffusion of hydrogen peroxide was identified using yeast phenotypic growth assays and by studying AQP gene knock-outs in A. niger. The X-intrinsic protein AQPF appears to play roles in facilitating hydrogen peroxide transport across the cellular membrane in both Saccharomyces cerevisiae and A. niger experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.