RNA‑binding motif 3 (RBM3) is a cold‑shock protein that has been previously shown to attenuate cancer stem cell‑like features in prostate cancer (PCa) cells. However, the mechanism underlying RBM3 regulation in PCa cells is largely unknown. The present study investigated the impact of RBM3 expression on the whole transcriptome of PCa cells using high‑throughput RNA sequencing (RNA‑seq). Differentially expressed genes (DEGs) that were identified through RNA‑seq were applied to Gene Ontology (GO), pathway analysis, pathway‑action networks and protein‑protein interaction network analysis. GO and pathway ananlyses showed that RBM3 expression was associated with several metabolism pathways. Combining GO analysis and pathway analysis, certain DEGs, including phospholipase A2 group IIA (PLA2G2A), PLA2G2F, PLA2G4C, endothelin 1, cytochrome P450 family 2 subfamily B member 6, G protein subunit γ5, nitric oxide synthase 3 and CD38 molecule, were shown to be closely associated with RBM3 regulation in PCa cells. Furthermore, the changes in expression of selected genes upon RBM3‑knockdown in RNA‑seq were confirmed by separate reverse transcription‑quantitative‑polymerase chain reaction, validating the results of RNA‑seq. Thus, the present study provides a series of valuable reference genes and pathways for the future study of the pathogenic role of RBM3 in the development of PCa.