Neural tube closure takes place during early embryogenesis and requires interactions between genetic and environmental factors. Failure of neural tube closure is a common congenital malformation that results in morbidity and mortality. A major clinical achievement has been the use of periconceptional folic acid supplements, which prevents ~50-75% of cases of neural tube defects. However, the mechanism underlying the beneficial effects of folic acid is far from clear. Biochemical, genetic and epidemiological observations have led to the development of the methylation hypothesis, which suggests that folic acid prevents neural tube defects by stimulating cellular methylation reactions. Exploring the methylation hypothesis could direct us towards additional strategies to prevent neural tube defects.Neural tube defects (NTDs) are complex congenital malformations of the CNS. Anencephaly and spina bifida are the most common and severe forms of NTD, with a prevalence of about 1 in 1,000 births, although this varies throughout the world 1 . Infants with anencephaly are stillborn or die shortly after birth, whereas infants with spina bifida can survive but are likely to have severe lifelong disabilities and are at risk of psychosocial maladjustment. The estimated lifetime medical costs are high; for example, in California, USA, the costs for children born with spina bifida exceed US$81 million per year 2 .It has been known for more than 20 years that women can reduce their risk of having an NTDaffected pregnancy by taking folic acid supplements. However, the underlying mechanisms byCorrespondence to H.J.B. H.Blom@cukz.umcn.nl.
Competing interests statementThe authors declare no competing financial interests.
DATABASES
NIH Public Access
Author ManuscriptNat Rev Neurosci. Author manuscript; available in PMC 2010 November 2.
Neurulation and neural tube defectsNeurulation has long fascinated scientists, as evidenced by a devoted literature that extends back hundreds of years. The process of neurulation occurs during early embryogenesis, starting with the formation of the neural plate from specialized ectodermal cells and culminating in the closure of the neural tube (FIG. 1), the precursor of both the CNS and most of the PNS. Considered most simply, the neural plate develops bilateral neural folds, which elevate and fuse at the midline to create the neural tube. Subsequent development, together with vesiculation within the tube, gives rise to the brain and spinal cord. Further details of this complex process are beyond the scope of this review (for reviews, see REFS 4,5 ).Neurulation seems to be highly complex and tightly regulated. The development and closure of the neural tube is usually completed by 28 days post-conception. This means that by the time a woman finds out that she is pregnant, the neural tube is almost completely closed. For the neural tube to close properly, genes that regulate various morphogenetic activities must function cooperatively. These activities include programmed cell death, neural crest...