Background:Critically ill children are susceptible to nosocomial infections, which contribute to adverse outcomes. Deficiencies in the innate immunity lectin pathway of complement activation are implicated in a child's vulnerability to infections in conditions such as cancer, but the role during critical illness remains unclear. We hypothesized that low on-admission levels of the pathway proteins are, in part, genetically determined and associated with susceptibility to infectious complications and adverse outcomes. Methods: We studied protein levels of mannose-binding lectin (MBL), H-ficolin and M-ficolin, three MBL-associatedserine proteases (MASPs) and MBL-associated protein (MAp44), and relation with functional genetic polymorphisms, in 130 healthy children and upon intensive care unit (ICU) admission in 700 critically ill children of a randomized study on glycemic control. results: Levels of MASP-1, MASP-2, MASP-3, and MAp-44 were lower and the levels of M-ficolin were higher in ICU patients on admission than those in matched healthy controls. Only a low on-admission MASP-3 level was independently associated with risk of new ICU infections and prolonged ICU stay, after correcting for other risk factors. On-admission MASP-3 varied with age, illness severity, and genetic variation. conclusion: Low on-admission MASP-3 levels in critically ill children were independently associated with subsequent acquisition of infection and prolonged ICU stay. The biological explanation needs further investigation.